Bergman’s Comprehensive Encyclopedia of Human Anatomic Variation
As the reader sees from the title of this textbook, it is dedicated to Dr. Ronald Bergman.
Dr. Bergman was not the first to collect and publish on the variations of the human anatomy
(e.g. Henle, Macalister, Adachi). However, he was the first to publish on this topic at such an in
depth and comprehensive scale. My first introduction to Dr. Bergman's *Compendium of Human
Anatomic Variation* was as a graduate student. As any dissector will eventually do, I came across
something unusual in one of our cadavers during a routine dissection. I asked by my mentor,
Dr. George Salter, about this who said, “You know there used to be a book in the lab office that
focused on the anatomic variations of the body.” After some digging, I was delighted to find this
book, which I set out to memorize as best as I could. From that day on, Dr. Bergman's book and
Gray's Anatomy were my main resources for studying anatomy. Therefore, this current text is not
only an updated resource but also a tribute to the pioneering efforts of Dr. Ronald Bergman who
reminded us that no two bodies are the same!

R. Shane Tubbs
I would like to dedicate my work on this enormous project to my son, Isaiah. Isaiah you are the light of my life! To my wife, Susan, you are the best. Many thanks to Drs. Rod Oskouian and Johnny Delashaw for their encouragement. Also, Dr. W. Jerry Oakes has supported this project and my other academic endeavors and I sincerely thank him. Lastly, I thank Dr. E. George Salter for persuading me to take on a career in anatomy and for first introducing me to the *Compendium of Human Anatomic Variation*!

R. Shane Tubbs

To Susan and Shane Tubbs, a very beautiful couple.

Mohammadali M. Shoja

To the love of my life, my wife Joanna Loukas

Marios Loukas
Contents

List of contributors, xi
Preface, xvii
Foreword by Stephen W. Carmichael, xix
Foreword by Ronald A. Bergman, xx

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skull</td>
<td>1</td>
<td>Selcuk Tunali</td>
</tr>
<tr>
<td>2</td>
<td>Hyoid bone</td>
<td>22</td>
<td>R. Shane Tubbs and Koichi Watanabe</td>
</tr>
<tr>
<td>3</td>
<td>Cervical vertebrae</td>
<td>24</td>
<td>Joseph H. Miller, Michael C. Lysek and Mark N. Hadley</td>
</tr>
<tr>
<td>4</td>
<td>Thoracic vertebrae</td>
<td>30</td>
<td>Benjamin J. Ditty, Nidal B. Omar and Mark N. Hadley</td>
</tr>
<tr>
<td>5</td>
<td>Lumbar vertebrae</td>
<td>33</td>
<td>Ross Dawkins and Mark N. Hadley</td>
</tr>
<tr>
<td>6</td>
<td>Sacrococcygeal vertebrae</td>
<td>37</td>
<td>R. Shane Tubbs and Marios Loukas</td>
</tr>
<tr>
<td>7</td>
<td>Scapula</td>
<td>40</td>
<td>Peter Ward</td>
</tr>
<tr>
<td>8</td>
<td>Clavicle</td>
<td>51</td>
<td>Z.J. Daruwalla, R. Malhotra, P. Courtis, C. Fitzpatrick, D. Fitzpatrick and H. Mullett</td>
</tr>
<tr>
<td>9</td>
<td>Humerus</td>
<td>63</td>
<td>Peter Ward</td>
</tr>
<tr>
<td>10</td>
<td>Radius, ulna, carpals, metacarpals, and phalanges</td>
<td>68</td>
<td>Munawar Hayat and Marios Loukas</td>
</tr>
<tr>
<td>11</td>
<td>Ribs and sternum</td>
<td>76</td>
<td>R. Shane Tubbs and Koichi Watanabe</td>
</tr>
<tr>
<td>12</td>
<td>Pelvic bones</td>
<td>82</td>
<td>Alper Cesmebasi and Marios Loukas</td>
</tr>
<tr>
<td>13</td>
<td>Bones of the lower limb</td>
<td>89</td>
<td>Matthew Haffner and Michael Conklin</td>
</tr>
<tr>
<td>14</td>
<td>Temporomandibular joint</td>
<td>116</td>
<td>Toral R. Patel and Jarrod A. Collins</td>
</tr>
<tr>
<td>15</td>
<td>Shoulder joint</td>
<td>124</td>
<td>Brion Benninger</td>
</tr>
<tr>
<td>16</td>
<td>Elbow joint</td>
<td>130</td>
<td>Giuseppe Giannicola, Federico Maria Sacchetti, David Polimanti, Gianluca Bullitta, Marco Scacchi and Pietro Sedati</td>
</tr>
<tr>
<td>17</td>
<td>Wrist and hand joints</td>
<td>158</td>
<td>Benjamin Todd Raines and Jean Oakes</td>
</tr>
<tr>
<td>18</td>
<td>Sacroiliac joints</td>
<td>165</td>
<td>Niladri Kumar Mahato</td>
</tr>
<tr>
<td>19</td>
<td>Hip joint</td>
<td>176</td>
<td>Robert Ward</td>
</tr>
<tr>
<td>20</td>
<td>Knee joint</td>
<td>181</td>
<td>Brion Benninger</td>
</tr>
<tr>
<td>21</td>
<td>Ankle and foot joints</td>
<td>204</td>
<td>Takamitsu Arakawa</td>
</tr>
<tr>
<td>22</td>
<td>Orbital muscles</td>
<td>207</td>
<td>Necdet Kocabiyik</td>
</tr>
<tr>
<td>23</td>
<td>Middle ear muscles</td>
<td>212</td>
<td>José Francisco Rodríguez-Vázquez</td>
</tr>
<tr>
<td>24</td>
<td>Facial muscles and muscles of mastication</td>
<td>217</td>
<td>Koichi Watanabe</td>
</tr>
<tr>
<td>25</td>
<td>Anterior neck muscles</td>
<td>228</td>
<td>Hye Yoon Lee and Hee Jun Yang</td>
</tr>
<tr>
<td>26</td>
<td>Pharyngeal muscles</td>
<td>236</td>
<td>Yujiro Sakamoto</td>
</tr>
<tr>
<td>27</td>
<td>Soft palate and tongue muscles</td>
<td>240</td>
<td>Swetal Patel and Marios Loukas</td>
</tr>
<tr>
<td>28</td>
<td>Prevertebral and craniocervical junction muscles</td>
<td>245</td>
<td>Yujiro Sakamoto</td>
</tr>
<tr>
<td>29</td>
<td>Laryngeal muscles</td>
<td>254</td>
<td>Eva Maranillo and Jose Sanudo</td>
</tr>
<tr>
<td>30</td>
<td>Back muscles</td>
<td>262</td>
<td>Barclay W. Bakkum and Nathan Miller</td>
</tr>
<tr>
<td>31</td>
<td>Scapulohumeral muscles</td>
<td>289</td>
<td>Clare Lamb</td>
</tr>
<tr>
<td>32</td>
<td>Arm muscles</td>
<td>293</td>
<td>Keiichi Akita and Akimoto Nimura</td>
</tr>
</tbody>
</table>
33 Forearm muscles, 298
 Keiichi Akita and Akimoto Nimura

34 Hand intrinsic muscles, 315
 Mirtha A. Gonzalez and David T. Netscher

35 Thoracic wall muscles, 335
 Michael Snosek and Marios Loukas

36 Abdominal wall muscles, 369
 Tsuyoshi Saga and Nagahiro Takahashi

37 Pelvic diaphragm and external anal sphincter, 381
 Howe Liu and Yasser Salem

38 Perineal muscles, 384
 R. Shane Tubbs and Koichi Watanabe

39 Gluteal muscles, 386
 Helen Nicholson and Natasha Flack

40 Thigh muscles, 410
 Maira du Plessis and Marios Loukas

41 Leg muscles, 421
 H. Wayne Lambert

42 Intrinsic muscles of the foot, 438
 Rene M. Kafka, Ian L. Aveytua, Regina C. Fiacco,
 Garen M. Ream, Anthony C. DiLandro and Anthony D’Antoni

43 Internal carotid artery and anterior cerebral circulation, 449
 Paul Foreman, Christoph J. Griessenauer, John P. Deveikis
 and Mark Harrigan

44 Vertebobasilar arteries, 461
 R. Shane Tubbs and Marios Loukas

45 Persistent fetal intracranial arteries, 465
 Soner Albay

46 Common carotid and cervical internal carotid arteries, 475
 R. Shane Tubbs and Marios Loukas

47 External carotid artery, 477
 Selcuk Tunali

48 Vertebral artery, 487
 Bernard George and Michaël Bruneau

49 Thoracic aorta, 501
 Veyssel Akgur, Salih Hamcan, Yalcin Bozkurt and Bilal Battal

50 Coronary arteries, 530
 Horia Muresian

51 Pulmonary arteries, 569
 M. Cumhur Sivrikoz

52 Subclavian artery, 575
 Selcuk Tunali

53 Upper limb arteries, 583
 Anthony Olinger

54 Abdominal aorta, 619
 Daisy Sahni, Anjali Aggarwal, Tulika Gupta, Harjeet Kaur, Richa Gupta,
 Kunal Chawla, Narbada Saini, Shallu Garg, Anjali Singla, Arpan Deep, Harsimran Jit Singh,
 Devendra Shekhawat and Megha Rapotra

55 Renal arteries, 682
 Priti L. Mishall

56 Internal iliac arteries, 694
 Richard Tunstall

57 Lower limb arteries, 741
 Akshal Patel

58 Arteries of the spinal cord, 752
 Marius C. Bosman and Albert van Schoor

59 Diploic veins, 770
 Satoshi Tsutsumi

60 Dural venous sinuses, 775
 Shamfa C. Joseph, Elias Rizk and R. Shane Tubbs

61 Cerebral veins, 800
 Alireza Sadighi, Ulâş Cikla, Gregory C. Kujoth and Mustafa K. Başkaya

62 Emissary veins, 817
 R. Shane Tubbs, Koichi Watanabe and Marios Loukas

63 Veins of the neck, 821
 R. Shane Tubbs and Koichi Watanabe

64 Veins of the upper limb, 826
 Teresa Vazquez and Jose Sanudo

65 Intrathoracic veins, 832
 Jonathan D. Spratt

66 Cardiac veins, 854
 Horia Muresian

67 Pulmonary veins, 871
 Yuttaphan Wannasopha and Junthima Euathrongchit

68 Inferior vena cava, portal and hepatic venous systems, 877
 Jonathan D. Spratt

69 Adrenal, renal, gonadal, azygos, hemiazygos, lumbar, and ascending lumbar veins, 890
 Marios Loukas and R. Shane Tubbs

70 Iliac veins, 894
 Deepali Onkar

71 Veins of the lower limb, 900
 Santosh K. Sangari
Venous drainage of the spinal cord, 910
Joel Raborn, Christoph J. Griessenauer, Mohammadali M. Shoja and R. Shane Tubbs

Thymus, 914
Ivan Varga

Tonsils, 919
R. Shane Tubbs and Marios Loukas

Thoracic duct, chyle cistern, and right lymphatic duct, 921
Young-Bin Song

Lymphatics of the lower limb, 935
Shun Yamazaki, Hiroo Suami, Nobuaki Imanishi, Sadakazu Aiso, Minoru Yamada, Masahiro Jinzaki, Sachio Kuribayashi, David W. Chang and Kazuo Kishi

Forebrain, 939
R. Shane Tubbs, Mohammadali M. Shoja and Marios Loukas

Cerebral ventricles, 943
Martin M. Mortazavi, Nimer Adeeb, Mohammad Jaber and R. Shane Tubbs

Pons, medulla oblongata and cerebellum, 954
Dylan Goodrich, Jennifer Yang, Joseph H. Miller and W. Jerry Oakes

Subarachnoid space, 959
Martin M. Mortazavi, Nimer Adeeb, Fareed Rizq and R. Shane Tubbs

Meninges, 974
Nimer Adeeb, Martin M. Mortazavi and R. Shane Tubbs

Spinal cord and associated structures, 984
Shoko M. Yamada, Daniel J. Won, Pedro B. Nava, R. Shane Tubbs and Shokei Yamada

Cranial nerves N-VI, 989
Jenna R. Voirol, Kelley A. Strothmann, Anthony Zandian and Joel A. Vilensky

Facial nerve, 1005
Mohammadali M. Shoja and R. Shane Tubbs

Vestibulocochlear nerve, 1034
Mohammadali M. Shoja and R. Shane Tubbs

Glossopharyngeal nerve, 1036
Mohammadali M. Shoja, Marios Loukas and R. Shane Tubbs

Vagus, accessory, and hypoglossal nerves, 1041
Mohammadali M. Shoja, Christoph J. Griessenauer, Marios Loukas and R. Shane Tubbs

Autonomic nervous system, 1050
Paul Anthony Irwin, R. Isaiah Tubbs and R. Shane Tubbs

Spinal nerves, 1057
R. Shane Tubbs

Cervical plexus, 1062
Necdet Kocabiyik

Nerves of the upper extremity, 1068
Mark A. Mahan and Robert J. Spinner

Lumbosacral plexus, 1113
Nihal Apaydin

Facial asymmetry, 1130
Senem T. Ozdemir, Marios Loukas and R. Shane Tubbs

Eyelids, eyelashes, and eyebrows, 1133
Candace R. Wooten and Marios Loukas

Eye and lacrimal apparatus, 1145
Frederic J. Bertino

Lateral nasal wall and paranasal sinuses, 1158
Amr E. El-Shazly

Ear, 1167
Aman Deep, Martin M. Mortazavi and Nimer Adeeb

Salivary glands and ducts, 1182
Louise Wing and Tarik F. Massoud

Thyroid gland, 1189
Bulent Yalcin

Parathyroid glands, 1205
Bulent Yalcin

Laryngeal cartilages, 1209
Arán Pascual-Font and Jose Sanudo

Trachea, 1212
Koichi Watanabe

Lungs, 1217
Koichi Watanabe

Heart, 1234
Maira du Plessis and Marios Loukas

Esophagus, 1247
Koichi Watanabe

Stomach, 1253
Koichi Watanabe

Gallbladder and extrahepatic bile ducts, 1261
Mark D. Stringer

Liver, 1272
Koichi Watanabe

Pancreas, 1278
Koichi Watanabe
110 Spleen, 1282
Koichi Watanabe

111 Small intestines, appendix, and colon, 1285
Koichi Watanabe

112 Sigmoid colon, rectum, and anus, 1308
Thandinkosi E. Madiba and Mohammad R. Haffajee

113 Kidney, urinary bladder, and ureter, 1315
Mohammad Reza Ardalan

114 Adrenal gland, 1332
Gülñur Özgüner

115 Male genitourinary system, 1335
Courtney L. Shepard, Dustin T. Gayheart
and David B. Joseph

116 Female genital system, 1364
Sedat Develi

117 Placenta and umbilical cord, 1387
Sedat Develi

118 Breast, 1390
Matthew Rubacha

Index, 1398
List of contributors

Nimer Adeeb
Children's of Alabama
Birmingham, Alabama, USA

Bilal Battal
Gulhane Military Medical Academy
Ankara, Turkey

Anjali Aggarwal
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Brion Benninger
Western University of Health Sciences
Portland, Oregon, USA

Sadakazu Aiso
Keio University
Tokyo, Japan

Frederic J. Bertino
St George’s University, School of Medicine
St Georges, Grenada

Veyssel Akgun
Gulhane Military Medical Academy
Ankara, Turkey

Marius C. Bosman
University of Pretoria
Pretoria, South Africa

Keiichi Akita
Tokyo Medical and Dental University
Tokyo, Japan

Yalcin Bozkurt
Golcuk Military Hospital
Kocaeli, Turkey

Soner Albay
Suleyman Demirel University Faculty of Medicine
Isparta, Turkey

Michaël Bruneau
Hôpital Erasme
Brussels, Belgium

Nihal Apaydin
Ankara University Faculty of Medicine
Ankara, Turkey

Gianluca Bullitta
“Sapienza” University of Rome
Rome, Italy

Son Albay
Suleyman Demirel University Faculty of Medicine
Isparta, Turkey

Alper Cesmebasi
St George's University, School of Medicine
St Georges, Grenada

Takamitsu Arakawa
Kobe Graduate School of Health Sciences
Kobe, Japan

David W. Chang
The University of Texas MD Anderson Cancer Center
Houston, Texas, USA

Mohammad Reza Ardalan
Tabriz University of Medical Sciences
Tabriz, Iran

Kunal Chawla
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Ian L. Aveytua
New York College of Podiatric Medicine
New York, New York, USA

Ulaş Cikla
University of Wisconsin
Madison, Wisconsin, USA

Barclay W. Bakkum
Illinois College of Optometry
Chicago, Illinois, USA

Jarrod A. Collins
Children's of Alabama
Birmingham, Alabama, USA

Mustafa K. Başkaya
University of Wisconsin
Madison, Wisconsin, USA
Michael Conklin
Children's of Alabama
Birmingham, Alabama, USA

Patrick Courtis
University College Dublin
Dublin, Ireland

Anthony D'Antoni
New York College of Podiatric Medicine
New York, New York, USA

Zubin J. Daruwalla
Beaumont Hospital
Dublin, Ireland

Ross Dawkins
University of Alabama at Birmingham
Birmingham, Alabama, USA

Aman Deep
Children's of Alabama
Birmingham, Alabama, USA

Arpan Deep
Postgraduate Institute of Medical Education & Research
Chandigarh, India

John P. Deveikis
University of Alabama at Birmingham
Birmingham, Alabama, USA

Sedat Develi
Gulhane Military Medical Academy
Ankara, Turkey

Anthony C. DiLandro
New York College of Podiatric Medicine
New York, New York, USA

Benjamin J. Ditty
University of Alabama at Birmingham
Birmingham, Alabama, USA

Maira du Plessis
St George’s University
St Georges, Grenada

Amr E. El-Shazly
Liege University Hospital
Liege, Belgium

Juntima Euathrongchit
Chiang Mai University
Chiang Mai, Thailand

Regina C. Fiacco
New York College of Podiatric Medicine
New York, New York, USA

David Fitzpatrick
University College Dublin
Dublin, Ireland

Clare Fitzpatrick
University College Dublin
Dublin, Ireland

Natasha Flack
University of Otago
Dunedin, New Zealand

Paul Foreman
University of Alabama at Birmingham
Birmingham, Alabama, USA

Shallu Garg
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Dustin T. Gayheart
University of Alabama at Birmingham
Birmingham, Alabama, USA

Bernard George
Hôpital Lariboisière
Paris, France

Giuseppe Giannicola
“Sapienza” University of Rome
Rome, Italy

Mirtha A. Gonzalez
Baylor College of Medicine
Houston, Texas, USA

Dylan Goodrich
St George’s University, School of Medicine
St Georges, Grenada

Christoph J. Griessenauer
University of Alabama at Birmingham
Birmingham, Alabama, USA

Richa Gupta
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Tulika Gupta
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Mark N. Hadley
University of Alabama at Birmingham
Birmingham, Alabama, USA

Mohammad R. Haffajee
University of KwaZulu-Natal
Durban, South Africa
Matthew Haffner
St George’s University, School of Medicine
St Georges, Grenada

Salih Hamcan
Agri Military Hospital
Agri, Turkey

Mark Harrigan
University of Alabama at Birmingham
Birmingham, Alabama, USA

Munawar Hayat
St George’s University, School of Medicine
St Georges, Grenada

Nobuaki Imanishi
Keio University
Tokyo, Japan

Paul Anthony Irwin
Children’s of Alabama
Birmingham, Alabama, USA

Mohammad Jaber
Children’s of Alabama
Birmingham, Alabama, USA

Masahiro Jinzaki
Keio University
Tokyo, Japan

David B. Joseph
Children’s of Alabama
Birmingham, Alabama, USA

Shamfa C. Joseph
St George’s University, School of Medicine
St Georges, Grenada

Rene M. Kafka
New York College of Podiatric Medicine
New York, New York, USA

Harjeet Kaur
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Kazuo Kishi
Keio University
Tokyo, Japan

Necdet Kocabiyyik
Gulhane Military Medical Academy
Ankara, Turkey

Gregory C. Kujoth
University of Wisconsin
Madison, Wisconsin, USA

Sachio Kuribayashi
Keio University
Tokyo, Japan

Clare Lamb
University of Dundee
Dundee, UK

H. Wayne Lambert
West Virginia University School of Medicine
Morgantown, West Virginia, USA

Hye Yeon Lee
Yonsei University College of Medicine
Seoul, Korea

Howe Liu
University of North Texas Health Science Center
Fort Worth, Texas, USA

Marios Loukas
St George’s University, School of Medicine
St Georges, Grenada

Michael C. Lysek
University of Alabama at Birmingham
Birmingham, Alabama, USA

Thandinkosi E. Madiba
University of KwaZulu-Natal
Durban, South Africa

Mark A. Mahan
University of Utah
Salt Lake City, Utah, USA

Niladri Kumar Mahato
Ohio University
Athens, Ohio, USA

R. Malhotra
Beaumont Hospital
Dublin, Ireland

Eva Maranillo
Complutense University of Madrid
Madrid, Spain

Tarik F. Massoud
Stanford University School of Medicine
Stanford, California, USA

Joseph H. Miller
University of Alabama at Birmingham
Birmingham, Alabama, USA

Nathan Miller
National University of Health Sciences
Lombard, Illinois, USA
Daisy Sahni
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Tsuyoshi Saga
Kurume University School of Medicine
Fukuoka, Japan

Narbada Saini
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Yujiro Sakamoto
Tokyo Medical and Dental University
Tokyo, Japan

Santosh Sangari
Weill Cornell Medical College
New York, New York, USA

Jose Sanudo
Complutense University of Madrid
Madrid, Spain

Marco Scacchi
“Sapienza” University of Rome
Rome, Italy

Albert van Schoor
University of Pretoria
Pretoria, South Africa

Pietro Sedati
“Sapienza” University of Rome
Rome, Italy

Harsimran Jit Singh
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Anjali Singla
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Devendra Shekhawat
Postgraduate Institute of Medical Education & Research
Chandigarh, India

Courtney L. Shepard
University of Alabama at Birmingham
Birmingham, Alabama, USA

Mohammadali M. Shoja
Tuberculosis and Lung Disease Research Center
Tabriz University of Medical Sciences
Tabriz, Iran

M. Cumhur Sivrikoz
Eskişehir Osmaniye University Medical Faculty
Eskişehir, Turkey

Michael Snosek
St George’s University, School of Medicine
St Georges, Grenada

Young-Bin Song
Children’s of Alabama
Birmingham, Alabama, USA

Robert J. Spinner
Mayo Clinic
Rochester, Minnesota, USA

Jonathan Spratt
University Hospital of North Durham
Durham, UK

Mark D. Stringer
Christchurch Hospital
University of Otago
Dunedin, New Zealand

Kelley A. Strothmann
Indiana University
Fort Wayne, Indiana, USA

Hiroo Suami
The University of Texas MD Anderson Cancer Center
Houston, Texas, USA

Nagahiro Takahashi
Kurume University School of Medicine
Fukuoka, Japan

Satoshi Tsutsumi
Juntendo University Urayasu Hospital
Chiba, Japan

R. Shane Tubbs
Seattle Science Foundation
Seattle, Washington, USA
St George’s University, School of Medicine
St Georges, Grenada
University of Dundee
Dundee, UK

Richard Isaiah Tubbs
Children’s of Alabama
Birmingham, Alabama, USA

Selcuk Tunali
TOBB University of Economics and Technology
Ankara, Turkey
University of Hawaii
Honolulu, Hawaii, USA

Richard Tunstall
The University of Warwick
Coventry, UK
Senem T. Ozdemir
Uludag University
Bursa, Turkey

Ivan Varga
Comenius University in Bratislava
Bratislava, Slovakia

Teresa Vazquez
Complutense University of Madrid
Madrid, Spain

Joel Vilensky
Indiana University
Fort Wayne, Indiana, USA

Jenna R. Voirol
Indiana University
Fort Wayne, Indiana, USA

Yutthaphan Wannasopha
Chiang Mai University
Chiang Mai, Thailand

Peter J. Ward
West Virginia School of Osteopathic Medicine
Lewisburg, West Virginia, USA

Robert Ward
Tufts Medical Center,
Boston, Massachusetts, USA

Koichi Watanabe
Kurume University School of Medicine
Fukuoka, Japan

Louise Wing
John Radcliffe Hospital
Oxford, UK

Stephanie Woodley
University of Otago
Dunedin, New Zealand

Candace R. Wooten
St George’s University, School of Medicine
St Georges, Grenada

Daniel J. Won
Loma Linda University School of Medicine
Riverside, California, USA

Bulent Yalcin
Gulhane Military Medical Academy
Ankara, Turkey

Shoko M. Yamada
Loma Linda University School of Medicine
Riverside, California, USA

Shokei Yamada
Loma Linda University School of Medicine
Riverside, California, USA

Minoru Yamada
Keio University
Tokyo, Japan

Shun Yamazaki
Keio University
Tokyo, Japan

Jennifer Yang
University of Alabama at Birmingham
Birmingham, Alabama, USA

Hee Jun Yang
Gachon Graduate School of Medicine
Incheon, South Korea

Anthony Zandian
St George’s University, School of Medicine
St Georges, Grenada
Since the beginning of time, differences between humans have made us identifiable to those around us. Some extreme forms of morphological variation have even resulted in individuals being either unique or outcasts. For example, dwarfs have been revered in various cultures and even represented in royal courts and some cultures have bestowed a god status on children born with multiple limbs. Other variations, however, have been viewed as “different” enough to warrant being ostracized. Children being born with a caudal appendage (tail) who were considered offspring of Satan exemplify this.

Human anatomic variation can be defined as human form that is outside of the normal. However, what is normal? This question is often very difficult to answer. For example, most would agree that having two breasts is normal but what about a woman with accessory breasts? Is this normal, abnormal or even pathologic? Is it a variant or an anomaly? Sometimes, the answer to these questions is based on cultural norms or societal acceptance.

Obviously, hair color is certainly varied among individuals with many having a color that doesn't fit into the classic brown, black, red, or blonde categories. But are various hair colors that one of these terms does not apply to have a variation or is this simply an issue of definition e.g. red in the broader sense would include auburn, strawberry, etc.? In other words, our definition of normal is the gauge by which an anatomic trait is considered a variation or not. Some have tried to shed light on this by using such words as “borderlands.” Beyond the “border” a trait is thereby considered a variation. To confuse these issues, the term anomaly is and has been used interchangeably in regard to both variation and pathology. Herein, we have attempted to avoid pathologic anatomy but often, the line between an anatomic variation that is pathologic or predisposes one to pathology and one that is just a trait that is outside of what is considered normal is very gray. Moreover, as the term “anomaly” is often used to denote a variation that results in dysfunction or disease, we have tried to avoid this term when possible. However, the form of a structure may cause dysfunction in one person and not another. Therefore, “anomalies” do not always result in dysfunction or disease. The terms “abnormal” and “aberrant” have each been used loosely in the medical literature to describe anatomy that is non-pathologic or results in dysfunction.

Confoundedly, there are variations within variations. Where does one draw the line between a variation that is accepted as “normal” (the so-called normal variant) and a variation that is considered “abnormal”? In this text, we have attempted to be more inclusive than not. If the majority of individuals do not have an anatomic trait, then we have considered it a variation. With this however, the definition of majority has to be defined.

A quarter of a century ago, Dr. Ronald Bergman set forth to collect and publish a compendium of human variation. His textbook soon became the gold standard in human anatomic variation. As anatomists, we consulted this text almost daily. However, in the interim since its publication, radiologic technology and improved optics such as the surgical microscope have allowed us to see into the body with better accuracy than ever before. As a result, many more variations have come to the anatomist's and clinician's attention. Therefore, an updated textbook devoted to human anatomic variation seemed timely. However, as no single text on human anatomy can include all of the intricate details and structures of the body, so too can no single text on human anatomic variation capture all known or reported variants of the body, although we have tried. This tome will attempt to capture many of the known variants of the human form.

Nothing is pleasant that is not spiced with variety.

Francis Bacon

Through every rift of discovery some seeming anomaly drops out of the darkness, and falls, as a golden link into the great chain of order.

Edwin Hubbel Chapin

Variety is the very spice of life that gives it all its flavor.

William Cowper

The essence of the beautiful is unity in variety.

W. Somerset Maugham

I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection.

Charles Darwin

Variety of mere nothings gives more pleasure than uniformity of something.

Jean Paul

The gifts of nature are infinite in their variety, and mind differs from mind almost as much as body from body.

Quintilian
To such an extent does nature delight and abound in variety that among her trees there is not one plant to be found which is exactly like another; and not only among the plants, but among the boughs, the leaves and the fruits, you will not find one which is exactly similar to another.

Leonardo DaVinci

The catalogue of forms is endless: until every shape has found its city, new cities will continue to be born. When the forms exhaust their variety and come apart, the end of cities begins.

Italo Calvino

R. Shane Tubbs
With the possible exception of a few pairs of identical twins, the anatomy of every human being on this planet is unique. That means that there are as many anatomical variations as there are people! Obviously, only a small percentage of these variations are of clinical significance. There are subtle variations in facial anatomy that will allow a clinical anatomist to tell one person from another, but that is not the type of variation that this textbook is about. Instead, this textbook is a resource for the clinical anatomist who needs a single comprehensive source for all the variations that have been published in peer-reviewed journals or web sites.

This new text is the first of its kind since *Compendium of Human Anatomic Variation: Text, Atlas, and World Literature* by Ronald A. Bergman, Sue Ann Thompson, and Adel K. Afifi published in 1988. There have been many published accounts of variations since that time. In fact, this text contains thousands of published variations. This update is clinically important in view of recent advances in surgery and radiologic imaging. For a surgical example, endoscopic surgery makes what was previously an insignificant variation now necessary for the surgeon to recognize in order to perform a procedure safely. Improved resolution of radiologic images in all modalities makes it more important to be able to recognize what is pathologic and what is a normal variation.

Bergman’s “Compendium” was the “gold standard” of its day. This text will soon become the new gold standard. Even Dr. Bergman would agree with that!

Respectfully submitted,
Stephen W. Carmichael, Ph.D., D.Sc.
Professor Emeritus of Anatomy and Orthopedic Surgery,
Mayo Clinic
Editor Emeritus, *Clinical Anatomy*
This book, with great personal pride for me, provides elegant confirmation of the proven fact that the human body (as well as every living thing) is not created without variability. To paraphrase a profound statement by Sir William Osler, “variability is the rule of life”! The present book complements and extends a previous compendium, and an internet edition of human anatomic variation. Dr. Shane Tubbs conceived and developed this revision. He and his co-editors expand our knowledge and are to be very highly commended for keeping the concepts fresh in the minds of all who are interested in the structure and function of the human body.

Ronald A. Bergman, PhD
Emeritus Professor of Anatomy
The University of Iowa